MC-18/U Graupmer JR E CON R 0000 ----000 000 00.0 000 000 ... 0.00 000 000000 0000000 000000 000000 000 000 000 000 000 000 000 00000 000 800 000 -----0 SOF MICROCOMPUTER EXPERT-SYSTEM

....

000

000

000

000

....

....

0000000

000

000

......

.....

...

Transmitter with accessory expansion

Programming Manual

PROFI-ULTRASOFT-MODULE 256k

The Graupner PROFI-ULTRASOFT-Module 256k offers the modeller practically all currently imaginable functions for the operation of the most diverse types of sailplanes and powered models, including such complex ones as helicopters. The programs have been developed on the basis of practical experience, in close cooperation with renowned model flyers and, as a result leave barely anything to be desired even for, and in, hard contest environments. The clear, logical design of the various functions, however, enables even the less experienced model flyer to take advantage of these programs in everyday flying conditions and operation.

The complexity of the program and their extreme specialisation on specific model types require separating this programming manual into three sections: a general section which concerns all model types in like manner, another section for fixed-wing power models and sailplane models and a third one for helicopter models. Power models and sailplanes are named fixed-wing models here, to distinguish them from helicopter models.

Fixed-wing model and helicopter sections are arranged in two parts each: the detailed description of the options, which may be called under their specific code numbers, plus a compilation of programming examples which can be used as they are presented here or modified to suit one's own application requirements. The numbering of the options has been chosen to suit in-house technical deliberation. Their description, however, follows the sequential order in which they'll normally be called when performing the setting-up process of a new model.

The high flexibility of adaptability to individual requirements or demands of the operator necessitate the provision of specific allocations before calling and setting up the options depending on them. Thus the possibility of free allocation of the FUAL RATE switches necessitates – for example – the determination of this allocation, before the DUAL RATE values can be adjusted. The same holds true, in similar manner, for other options, in particular those of the helicopter programs.

The beginner and less experienced model flyer will be advised to study and use the programming examples, as practically usable – adjustments can then be made in the shortest possible time, with the essential operational steps being learned at the same time. This applies to the helicopter gyro in particular, which is enabled to adjust a sensible selection of the extensive offering of the helicopter options, and to learn to use them in the process. However, the experienced R/C pilot will benefit as well in studying the programming examples thoroughly and practising the described adjustments, thereby getting familiar with the operation and handling of the transmitter.

In order to spare the user cross-referencing and the bothersome turning of pages from one section to another, both the fixed-wing and helicopter sections contain descriptions of ALL available options, irrespective of whether descriptions have been published previously. This part of the text may appear several times in this manual, as this will help simplify the use of the

MICRO COMPUTER EXPERT SYSTEM MC-18.

Note:

All functions of the PROFI-ULTRASOFT-MODUL are compatible with any of the MC-18 transmitters. With transmitters up to the '88 series only seven models can be stored without back-up copy, however, Conversion from 7 to 30 models storage capacity can be performed by the Graupner Service.

Contents

General Section	4 – 7
Codes of the PROFI-ULTRASOFT-MODULE General Information Selection of Model Type Mode of Operation – Code Menu Analogue Adjustment of Values	4 5 6-7 7 7
Fixed-wing model section	8 – 56
Control Connections, Receiver Outlets Model Type Block Diagrams Code Chart – Model Types 1 – 5 Description of Options – Model Types 1 – 5 Code Chart – F3B Models - Types 6 – 7 Description of Options – F3B Models	8 - 9 10 - 16 17 18 - 35 36 38 - 43
Fixed-wing Programming Examples	
 Basic Settings Preparations Executing a Reset Selection of Model Memory Input Name of Model Allocation of Control Sticks Determining the Type of Model Determining the Idle Trim Copying the Settings Determining the Modulation Mode Adjusting the Direction of Servo Travel Adjusting Servo Throw 	$44 - 45 \\ 45 \\ 46 \\ 46 - 47 \\ 47 \\ 48 \\ 48 - 49 \\ 49 \\ 50 - 51$
<i>II. Supplementary Adjustments</i>1. Limiting Servo Throw2. Coordination of Throttle Characteristics3. Storage of Trim Data	52 52 – 53 35
III. Examples of Copying Single Model Memory All Models Memory Internal Copying	54 55 56

7	Helicopter Section	57 – 118
4	Receiver Outlets	57
5	Control Connections	58
7	Code Chart – Helicopter – Type 8	59
7	Description of Options – Helicopter Type 8	60 – 87
7	Description of Options – Helicopter Type 9	87
	Helicopter Programming Examples	
56	I. Basic Settings	
9	1. Preparations	88
16	2. Executing a Reset	88 – 89
17	3. Selection of Model Memory	89
35	Input Name of Model	89
36	5. Allocation of Control Sticks	90
43	6. Determining the Type of Model	90 – 91
	7. Direction of Throttle / Pitch Control Stick	
	8. Allocation of Switches	92
	9. Copying the Settings	92 – 93
14	10. Determining the Modulation Mode	93 94
45	 Type of Swashplate Direction of Torque Compensation 	94 94 – 95
45	13. Switching Activation of Auto-rotation	94 – 95 95
45	14. Adjusting Servo & Rotor Mixer Direction	
46	15. Pitch Adjustments	97 – 99
47	16. Adjusting Torque Compensation	99
47 40		100 – 101
48 49	II. Upgrading for Advanced Pilots	
49	1. Throttle Preset	102
51		102 - 103
	b. By Switch	103
-0	c. By Switch and Slider Control	103
52	2. Complementing Auto-Rotation Settings	104
53	a. Maximum Pitch	104 – 105
35	b. Minimum Pitch	105
	c. Tail Rotor Centre Position in Auto-Ro	
54	3. Compensating for Tail Rotor Load	106 – 107
55		

III. Further Upgrading for Expert Pilots	
1. PROFITRIM Module	108
a. Test Flying with PROFITRIM	108
b. PROFITRIM for Competition Use	109
2. Changeover from Hover to Aerobatics	110
a. Normal Adjustments for Aerobatics	110
 Alternative Adjustments for Hover 	111 – 115
3. Changeover to Auto-Rotation	116
4. Flare Compensation	117 – 118

Appendix Changes from the MULTISOFT-Module 118 – 119

Codes of the PROFI-ULTRASOFT-MODULE

Model Type Display Reads Meaning		Meaning				Display Reads	Meaning	Described on				
Code		Fixed-Wing	Helicopter	Code						Fixed-Wing	Helicopter	
1-5 6,7 8 9)		Page	Page	1	-5 6	,7 8	9			Page	Page
11 11 11 1	1 REVERSE SW	Direction of Rotation of Servos	21	65	5	57 5	57 57	57	MODE SELECT	Stick Mode Selection	18	60
12 12 12 1	2 THROW ADJUST	Servo Throw Adjustments	22	75	5	58 5	58 58	58	MODEL TYPE	Model Type Selection	19	61
13 13 13 1	3 DUAL RATE	Switchable Servo Throw Reduction	24	77	5	59 5	59 59	59	TRIM OFFSET	Storage of Trim Offset Values	25	82
14 14 14 1	4 EXPONENTIAL	Exponential Servo Movement	24	77	6	61 6	61 61	61	MIXx COM GAIN	Mixer No x Common Gain Adjust	30	80
15 15 15 1	5 SUB TRIM	Servo Neutral Po int Adjust	22	76	6	63 6	63 63	63	CH1-SWITCH	Channel 1 Dependant Auto Switch	29	79
16 16 16 1	6 TRACE RATE	Adjust Effect of Operating Stick	23	76	e	6			PROGRAM-AUTOM	Automatic Manoeuvre Set -up	28	
17	RED. THROTTLE	Switchable Throttle Reduction	28				67		ATS SELECT	Automatic Torque System S elect		66
18 18	IDLE R. TRIM	Idle Trim Adjustment	19				68	68	SWASH TYPE	Swashplate Type Selection		64
19 19 19 1	9 THROW LIMIT	Servo Throw Reduction	22	76			69	69	SWASH ADJUST	Swashplate Mixer Adjustment		65
21 2	1 GAS STICK DR	Direction of Pitch Control		61	7	71 7	71 71	71	MIXx SEP GAIN	Mixer No x Separate Gain Adjust	30	80
22 22	DIFF. RATE	Aileron Differential	27		7	72 7	2		MIX ONLY CH	Allows Isolation of Control from O/P	32	
23 23 23 2	3 SWITCH FUNCT.	External Switch Allocation	20, 38	62	7	73 7	3 73	73	SWITCH POSIT.	Display of Switch Positions	36	84
24 2	4 AUTO ROTATION	Autorotation Changeover Set -up		66	7	74 7	4 74	74	SERVO POSIT.	Display of a Servo Position	35	83
25 2	5 INV. FLIGHT	Set-up for Inverted Flight		66			75	75	SWSH→RUDD MIX	Swashplate to Tail Rotor Mix		75
26 2	6 HIGH PITCH	Maximum Pitch Set -up		67	7	76 7	6 76		SERVO TEST	Allows Testing of Servos	35	83
27 2	7 LOW PITCH	Minimum Pitch Set		67	7	77	77 77	77	FAIL SAFE MEM	Set-up of Failsafe Mode	33	84
28 2	8 HOV. PITCH	Hover. Pitch Set		67	7	78 7	78 78	78	FAIL SAFE BAT	Failsafe on Low RX Battery	34	85
29 2	9 THROTTLE TRIM	Allocation of Idle Trim		62	7	79 7	'9 79	79	SERVO SLOW-D	Servo Slow Set -up	23	78
31 31	THR/BRK MIDP	Set Channel 1 Mid -Point	23				81	81	STATIC ATS	Static Torque Compensation		68
	2 MODEL NAME	Input Model Name	19	61			82	2	DYNAMIC ATS	Dynamic Torque Compensation		68
33 33 33 3	3 SWITCH MIX	Allocation of Mix Switches	30	80			83	83	AUTOR. Rud-of	Positions Tail Rotor in Auto -Rot'n		69
34 34 34 3	4 SWITCH DR/EXP	Dual Rate/Exponential Switch Set -up	24	63			84		HOV. THROTTLE	Set-up Throttle for Hover		69
35 35 35 3	5 RED. TRIM	Allows Reduction of Trim Range	25	78			85	;	IDLE UP	Set-up Throttle P resets		70
37 37 37 3	7 INP-PORT ASS	Allocation of External Contr ols	21	65			86	;	SWSH→THRO MIX	Swashplate to Throttle Mix		72
41	AILE→RUDD	Aileron to Rudder Mix	40				87	•	RUDD→THRO MIX	Tail Rotor to Throttle Mix		72
42	AILE→FLAP	Aileron to Flap Mix	40		8	88 8	88 88	88	KEYBOARD LOCK	Lock the Keyboard	34	86
43 43	V-TAIL SW	V-Tail Mixer	21				89	89	GYRO CONTROL	Set-up Gyro		72
44	BRK→ELEV	Spoiler to Elevator Mix	43			g	91 91	91	AN. TRIM SW	Set-up for PROFITRIM	42	75
45	BRK→FLAP	Spoiler to Flap Mix	43			g	92 92	92	SMOOTH SWITCH	Servo Transit Time Set -up	39	78
46	BRK→AILERON	Spoiler to Aileron Mix	43				93	93	SWASH ROTATE	Enter Swashplate Rotation		68
47	ELEV→FLAP	Elevator to Flap Mix	42		ç	94 9	94 94	94	COPY MODEL	Model Copy Facility	26	82
48	FLAP→ELEV	Flap to Elevator Mix	42		9				MODULATION	PPM/PCM Select	18	60
49	FLAP→AILERON	Flap to Aileron Mix	40		ę	97 9	97 97	97	ALARM TIMER	Stop Watch Timer	32	85
51 51 51 5	1 MIXx CHANNEL	Channel Allocation for Mixers	30	80	9		8 98		INTEG. TIME	TX operating Timer	33	86
52	STRT-SPD-DIST	Flight Trim: Start, Speed, Distance	39		ç	99 9	99 99	99	ALL CLOSE	Lock the Transmitter	34	86
53	FLAP TRIM ASS	Flap Trim Assignment	39									
54	DIFF REDUCT	Reduction of Aileron Differential	43									
56 56 56 5	6 MODEL SELECT	Select Model	18	60								

General Information

Applicable to all Model Types

The installation of the module is performed as described in the MC-18 programming manual.

IMPORTANT

After installation of the module ALL model memories should be cleared. If this is not done, it is possible that fragments of previous programs left in the memory may cause malfunction in conjunction with the PROFI-ULTRASOFT-Module.

To this end, after selecting the model No via code 56 **ENTER**, entering the model number 1...7 (or 1...30¹), the key **CLEAR** has to be pressed first instead of just pressing the **ENTER**, and **ENTER** is then used to clear the memories. This step should preferably be performed immediately after installation of the module for ALL model memories, one after another.

Therefore input as follows:

ENTER56ENTER1CLEARENTERENTER56ENTER2CLEARENTER

ENTER 5 6 ENTER 7 CLEAR ENTER (... ENTER 5 6 ENTER 3 0 CLEAR ENTER)

This procedure needs only to be performed this one time.

List of Functions

. . .

The PROFI-ULTRASOFT-Module has nine different model types in all, which are selectable via code 58. For obvious reasons model selection must be the first step when programming a new model. This step determines which of the options will be available in the course of the programming process.

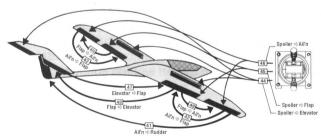
Basic Programs including Automatic Manoeuvres

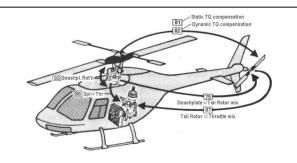
MULTISOFT for Aerobatic classes such as F3A and F3B

- Code Model Type
- 58/1 NORMAL
 - Normal Model
 - /2 NORMAL/DIFF Normal models with 2 Aileron Servos
 - /3 DELTA/DIFF Delta and Flying Wing models
 - /4 UNIFLY/DIFF For sailplanes & power models equipped with plain flaps or spoilers actuated by a single servo.
 - **/5** QUADRO-FLAP For sailplanes & power models equipped with separate servos for each aileron and each flap (4 wing mounted servos).

Universal Profi-Programs


For competition pilots in classes F3A, F3B, F3E & large soarers.


- 58/6 F3B (3 wing-sv) Universal program for contest models equipped with 3 wing mounted servos.
 (1 servo for flaps); undesired functions to be left unoccupied at the RX.
 - F3B (4 wing-sv)
 Universal program for contest models equipped with 4 wing mounted servos.
 (2 servos for flaps); undesired functions to be left unoccupied at the RX.


Universal Helicopter Programs

For contestflyers in class F3C

- 58/8 HELI Universal program for contest models including those equipped with rpm and gyro control.
 - /9 HELI (sp.ctl) Special program for contest models equipped with gyro and rpm control.

¹TX of series '89 (and later) are designed for 30 model memories.

Selection of Model Type

Type 1: NORMAL

The majority of model aircraft belong in this category. It comprises all power and sailplane models with elevator, rudder, ailerons and throttle (or in the case of gliders; the spoilers), which are actuated by one servo for each of the controls. The situation remains unchanged even if additional control channels are used to actuate supplementary functions, such as retracts, glider tug release couplings, mixture adjust or flaps (such as plain flaps) of sailplane models. Any options available, and sensible, in conjunction with this configuration are provided here. In the case of a model equipped with a V-Tail (replacing the conventional type of tailplane), a special mixer may be used, which combines the control functions of elevator and rudder in such a manner as to provide each of the control surfaces, each controlled by a separate servo, with elevator plus rudder functions. For more complex applications, such as automatic compensation of elevator trim on actuation of flaps, no less than nine freely programmable mixers are available, permitting such functions to be tailored to prevailing conditions.

Type 2: NORMAL/DIFF

This type of model differs from type 1 (NORMAL) only by the provision of two separate servos for the actuation of the ailerons instead of a common servo. In this manner differential control of ailerons is provided, permitting the downward deflection of an aileron to be adjusted independently of the upward displacement.. This is achieved using code 22. The independent operation of the two ailerons by one servo each provides additional options, such as deflection of these control surfaces in the same direction, using them as plain flaps or flaperons. This option, too, is available to suit the modeller's requirements, thanks to the availability of nine freely programmable mixers.

Type 3: DELTA/DIFF

Type 3 corresponds to type 2, differing from the latter in that in deltas and flying wing models the elevator and aileron functions are performed by common control surfaces located at the trailing edges of the right and left wing panels and moving either in the same direction or in the opposite one. Each control surface being controlled by an independent servo, and with the correct mixture of aileron and elevator control provided for already. All other options are available with restrictions, including the nine freely programmable mixers.

Type 4: UNIFLY/DIFF

This type of model is a variant of type 2. It is meant for power models and sailplanes, where the plain flaps are actuated by a single servo, or the full-span ailerons are to operate as a combination of flaps and ailerons (flaperons). For this application the freely programmable mixers 1...5 have already been occupied by certain special functions, just as if one had adjusted type 2 to perform the mixer allocations oneself via code 51. This mixer allocation, which functions the combi-mix aileron-rudder, flaperon mix, elevator compensation on actuation of spoilers, elevator compensation on actuation of flaps and throttle pre-selection are realised, is not a compulsory one; it may be modified to suit the modeller's intentions, expanded by the additional four freely programmable mixers or cancelled entirely (re-creating type 2 again).

Type 5: QUADRO-FLAP

Type 5 is also a variant of type 2, just like type 4. It is meant mainly for large sailplane models, each wing panel of which is equipped with one servo for each aileron and flap, giving a total of 4 servos. Here, too, the special functions are realised by pre-adjusting of freely programmable mixers 1...5 for combi-mix aileron-rudder, flaperon mix, elevator compensation on actuation of spoilers, elevator compensation on actuation of flaps and mixing aileron function into the flap function. Here again mixer allocation can be modified, expanded or cancelled at any time.

Type 6: F3B (3 wing servos)

Type 6 is for F3B contest sailplane models, each aileron of which is actuated by a separate servo, while the plain flaps are operated by one common servo. The universal Profi program can also be used for models have two wing mounted servos. In this case the functions not required are left unoccupied in the receiver.

Options specifically meant for power models are missing here. However, there are available all kinds of imaginable mixing and coupling functions between aileron, elevator, rudder, spoilers and plain flaps, which are realised by special mixers. For the different tasks, dura tion, distance, speed and start, pertinent elevator trim data and flap settings can be stored and called